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Abstract

ii

We consider discrete wavelet transform (DWT) multiscale products for
detection and estimation of steps. Here the DWT is an overcomplete ap-
proximation to smoothed gradient estimation, with smoothing varied over
dyadic scale, as developed by Mallat and Zhong. We show that the mul-
tiscale product approach, as first proposed by Rosenfeld for edge detec-
tion, is a nonlinear whitening transformation. We characterize the resulting
non-Gaussian heavy-tailed densities. The results may be applied to edge
detection with a false alarm constraint. The response to impulses, steps,
and pulses is also characterized. A general closed-form expression for the
Cramer-Rao bound (CRB) for discrete and continuous-time step-change
location estimation in independent identically distributed non-Gaussian
noise is developed, generalizing previous results. We consider location es-
timation using multiscale products, and compare results to the appropriate
CRB.
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1.

Introduction

Step (or edge) detection and estimation is a fundamental problem in many
areas of signal and image processing that involves basic statistical tradeoffs.
A classical approach to this problem is based on gradient estimation, noting
that the gradient will be large when a noise-free step is encountered. This
approach has been heavily exploited in image processing; e.g., see Jain [13,
chapter 9]. Many of the basic image edge-detection operators (see Roberts,
Prewitt, Sobel) reduce in 1-D to a finite impulse response (FIR) filter with
response [-1, 0, 1]. More general extensions, so-called filtered derivative
methods, combine smoothing with gradient estimation to reduce noise ef-
fects. These methods are attractive for their low-complexity linear imple-
mentations. In addition, they tend to be localized, and are therefore useful
in cases such as images that may be characterized by relatively high signal-
to-noise ratio (SNR) and multiple closely spaced change points.

The filtered derivative approach is motivated by application of linear filters
whose output is maximized when a step is encountered, while attempt-
ing to maintain good location estimation (localization) and low probability
of false alarm. A filtered derivative method that has received a lot of at-
tention is the derivative of Gaussian (dG), which estimates the gradient
after smoothing with a Gaussian function. The dG approach can be de-
rived under criteria of detection and localization (see Canny [7], Tagare
and deFigueiredo [32], and Koplowitz and Greco [15]). The problem can
also be formulated in terms of zero crossings of the second derivative, such
as the Laplacian of Gaussian approach, which is equivalent to dG in 1-D.
Attempting to achieve simultaneous detection and estimation results in a
tradeoff between the level of smoothing and the variance of the estimated
step location, and this tradeoff is sensitive to the edge shape and SNR. It
is therefore of interest to study gradient estimation techniques that exploit
multiple levels of smoothing (multiscale) simultaneously.

Many alternative techniques are based on formulating the problem as a
change in distribution, such as a step change in the mean. These meth-
ods often assume a moderate to large sample size around a single point
of change, and find application in such (typically 1-D) problems as fault
detection or vibration monitoring; e.g., see Basseville and Nikiforov [1]
and references therein. This problem may be formulated as one of quickest
change detection in an on-line setting; a Bayes-optimal approach was for-
mulated by Shiryaev in 1961 [30]. An important approach in this context is



the CUSUM (cumulative sum) algorithm; e.g., see Basseville and Nikiforov
[1, chapter 2]. These methods may be extended to include other changes in
statistical description, such as changes in second-order statistics. We note
that CUSUM and other higher complexity approaches may outperform fil-
tered derivative methods at low SNR when sufficient data are available
(e.g., see Basseville et al. [2-4]), although problems may be encountered for
closely spaced change points.

Itis well known that wavelets may be used to characterize the local regular-
ity of signals, and may be applied for singularity detection and character-
ization; e.g., see Mallat and Hwang [21]. In this regard, Mallat and Zhong
[22] developed a discrete wavelet transform based on smoothed gradient
estimation, where the level of smoothing varies with (dyadic) scale, conve-
niently placing the earlier work of Canny and others in the wavelet con-
text. This implementation is based on splines, and closely approximates
the derivative of Gaussian estimator; hereafter, we refer to the implemen-
tation in Mallat and Zhong [22] as the MZ-DWT algorithm (Matlab M-file
listings are provided in the appendix for the forward and inverse MZ-DWT
algorithm). This approach is nonorthogonal, so as to preserve regularity in-
formation at each point in time for each scale. Thus the MZ-DWT is simply
composed of a bank of FIR filters that are dyadic in scale, but whose outputs
are not downsampled. Each filter corresponds to dG with various levels of
smoothing. This has been applied to filtering (denoising) [21,34], compres-
sion [22], ECG characterization [18], and acoustic shockwave detection [29)].

A central question, then, is how to process and combine the multiscale gra-
dient information. Mallat and Zhong [21] estimated Lipschitz exponents
by tracking local maxima across scales, an approach that is rather sensitive
to noise. Li et al. [18] developed ad hoc modifications for the ECG prob-
lem. We also note the earlier work of Witkin [33], who developed ideas
for multiscale characterization of signals. Working on image processing be-
fore the advent of wavelets, Rosenfeld and coworkers suggested an inter-
esting idea, to form multiscale point-wise products [26-28]. This approach
is intended to enhance multiscale peaks due to edges, while suppressing
noise, by exploiting the multiscale correlation due to the presence of the
desired signal in a direct (albeit nonlinear) way. It is interesting to note that
Rosenfeld’s original work used dyadic scales, both for ease of implemen-
tation and because this seemed to work as well as any other combination
of scales. The multiscale product idea was recently applied for filtering of
magnetic resonance images by Xu et al. [34]. However, statistical analysis
of the multiscale product technique is lacking in this work.

.



In this report, we study the multiscale product approach for edge detec-
tion and estimation. We characterize it statistically and evaluate perform-
ance for detection and estimation of edges. First, we briefly introduce the
MZ-DWT and the multiscale product; numerical examples throughout the
report are based on the MZ-DWT implementation. Then we develop the
second-order statistics of multiscale products, showing the whitening ef-
fect of this nonlinear operation. We consider the step and pulse response
as a function of step width, quantifying the suppression of impulses in the
multiscale product. We then characterize the first-order probability density
function (pdf) of multiscale products, showing that they are, in general,
heavy-tailed. The resulting pdfs are applied to detection of edges with a
false alarm constraint. We consider step location estimation, and give re-
sults based on a general closed-form Cramer-Rao bound (CRB) derivation,
provided in the appendix. We close with a discussion of our study.



2. A Non-Orthogonal DWT and Multiscale Products

In this section we provide background and a quick overview of the MZ-
DWT algorithm. Matlab M-file listings are provided in the appendix. We
then introduce the multiscale product and provide motivating examples.

2.1 Multiscale Gradient Estimation

Consider a continuous time wavelet given by ¢,(t) = (1/s)¢(t/s), such
that ¢(t) meets appropriate criteria to be a wavelet. The continuous wavelet
transform (CWT) of z(t) € L%(R) is W,z(t) = z(t) * ¢s(t), where * denotes
convolution. The CWT is invertible via

z(t) = C /0 > /_ : W,a(r) 62 (r — t)dr?, )

where C' is a constant that depends on ¢(t), and ¢*(t) denotes complex
conjugation. In this report we restrict ourselves to 1-D; full details and 2-D
extensions of the CWT are described by Mallat [21,22].

Here we are concerned with wavelets such that ¢(t) = du(t)/dt, with u(t)
acting as a local average or smoothing function. Now,

Wez(t) = z(t) * (sd;;) (1) = s%(m * ug)(t), (2)
provided that ¢(t) is a valid wavelet with zero first moment, so that differ-
entiation and integration may commute [22]. Thus, for appropriate choice
of u(t), Wgr(t) can be interpreted as a derivative of a local average of z(t)
where the degree of smoothing depends on scale s. Of particular interest
here is the case of u(t) closely approximating a Gaussian function; the re-
sult is derivative estimation at various levels of smoothing.

Mallat and Zhong [22] developed a discrete wavelet transform (DWT) based
on a discrete-time approximation to a Gaussian u(t) using a cubic spline.
Consequently, ¢(t) is a quadratic spline. Restricting to dyadic scales, the
DWT of z(n),1 < n < N, consists of

ir(n), j=1.2,---,J—-1, 3)

where J = log, N, plus the remaining coarse scale information denoted
by S,(n). This DWT, consisting of J x N points, is overcomplete (non-
orthogonal). This contrasts with the (perhaps more commonly encountered)



orthogonal wavelet transforms where the number of coefficients decreases
with scale. The inverse DWT may be readily computed, enabling filtering
and reconstruction (see remark 1 at the end of this section).

To emphasize the linear filtering aspect of equation (3) and to simplify no-
tation, let

yi(n) = Woiz(n) = Y _hj(k)z(n — k) @
k

denote the DWT response to z(n) at the jth scale, where hj(n) is the im-
pulse response (IR) of the jth DWT filter. The MZ-DWT may be expressed
in the Fourier domain as follows. The Fourier transform of ¢(n) is [22]

_ . (sinw/4 4
@(w)—]w( w/4)' )]
Denoting the Fourier transform of h;(n) as H;(e“), then
G(w), j=1
Hj(e™) =4 G(2w)H(w), j=2 )
G2 W) H(22w)---H(w), j > 2
where
G(w) = 4je’/? sin(w/2), ?)
and
H(w) = 7/2 (cos(w/2))? . ®8)

G(w) and H(w) give rise to a time-domain recursion in the MZ-DWT filter
coefficients [22]. Note that H;(e’*) is purely imaginary and hence h;(n) is
anti-symmetric.

Hereafter we restrict our attention to Mallat and Zhong’s implementation
(MZ-DWT), although our results are general for a family of linear deriva-
tive estimation filters. Here, each filter is an approximation to dG, with
smoothing increasing with scale. The IR’s for the first five scales of the MZ-
DWT are shown in figure 1 (a) through (e), and some frequency response
magnitudes of equation (6) are shown in figure 2. Note that the linear re-
gions around the origin in figure 2 correspond to the frequency response of
a differentiation filter.

2.2 Multiscale Products

Working before the advent of the wavelet framework, Rosenfeld and cowork-
ers suggested forming multiscale point-wise products [26-28]. This is in-
tended to enhance multiscale peaks due to edges, while suppressing noise,



Figure 1. Impulse
responses of MZ-DWT
for (a) through (e) first
five scales, scale s = 27,
1 < j < 55 (f) multiscale
product p2(n); and
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by exploiting the multiscale correlation due to the presence of the desired
signal. The multiscale product of the DWT outputs is given by

p(n) = H Wysz(n) = H yi(n e

J=jo Jj=jo

As further motivation, the number of local maxima due to noise decreases
quickly with scale due to the increased smoothing. Specifically, for z(n)
white Gaussian noise the average number of local maxima at scale s = 27+1
is half that at scale s = 27 [21]. Thus, while maxima in Wj;z(n) due to edges
in z(n) will tend to propagate across scales, the maxima due to noise will
tend not to, so that p(n) will tend to reinforce the signal response and not
the noise.

An example is shown in figure 3, depicting the noise-free step-response
behavior of the MZ-DWT. Shown are (a) the time series, (b) through (e)
the MZ-DWT for the first four scales, (f) p(n) for jo = 1, and (g) j1 = 2
and 3. The peak in the DWT at various scales corresponds to the step edge.
Because the peaks align across the first few scales, the product p(n) exhibits
a corresponding peak.

A second example of the cross-scale product is given in figure 4. The sig-
nal is z(n) = As(n) + v(n), with A = 10, v(n) unit-variance white Gaus-
sian noise, and s(n) taking on values of 1 in the ranges [51, 150], [201, 250],
[301, 310], and [361, 365], as well as impulses given by é(n—416), §(n—442),
and d(n — 445). The SNR is 20 dB, defined as 10 log;0(A42/02). Here, peaks
do not align across arbitrarily high scales because neighboring peaks in-
terfere due to lengthening filter responses. The peaks in p(n) are generally
well pronounced, except for those corresponding to the isolated impulses
between n = 400 and 450 in the original time series, where smoothing leads
to weakened response at the higher scales (note also fig. 1 in this regard).
This suppression of impulses and the effect of pulse width is explored in
section 4. Peaks in figure 4(f) are generally positive going because of the
even number of products, whereas those in figure 4(g) are bipolar and pre-
serve the edge up/down direction information. In the following sections
we develop properties and analyze behavior of p(n).

Remarks
1. The inverse MZ-DWT may be readily accomplished [21,22]. In ad-

dition, reconstruction from local maxima via alternating projections
may also be attained, leading to edge-detection-based filtering [8].



Figure 3. Noise-free step
response of MZ-DWT:
(a) time series, (b)
through (e) first four
scales of DWT, (f) p2(n),
and (g) ps(n).

Figure 4 MZ-DWT
example showing (a)
time series, (b) through
(e) first four scales of
DWT, (f) normalized
p2(n), and (g)
normalized ps(n).
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Table 1. RoS of MZ-DWT
FIR filters as function of
scale.

Scale
1

W NN G s W N

. The region of support (RoS) of hi,1(n) is two plus twice the RoS of

hi(n) and the RoS of h;(n) = 2. These are tabulated in table 1; see also
figure 1. Also, h;(n) = —hi(—n), so that

> hi(l) =0, foralli. (10)
l;

As previously noted, the problem can also be formulated in terms of
zero-crossings of smoothed second derivatives (see, e.g., Mallat and
Hwang [21]). Multiscale products could then be searched for minima.

To avoid discontinuities at the window edges when computing the
MZ-DWT, we use an odd-symmetric extension of the data. The issue
is discussed in Mallat and Zhong [22].

An interesting method for multiscale estimation is to use the iterative
regularization approach [11,12], which might facilitate better align-
ment of multiscale peaks in the noisy signal case. This approach is
nonlinear, and analysis along the lines presented here is consequently
not straightforward.

Denjean and Castanie [9] have proposed multiscale detection tests.
They form a multivariate Gaussian test statistic that uses various scales
of a continuous wavelet transform.

RoS
2

6

14
30
62
126
254
510



3. A Nonlinear Whitening Transformation

10

In this section we consider the first- and second-order statistics (SOS) of
the DWT. For numerical results we focus on the MZ-DWT implementation,
while noting that the analysis applies more generally to filter banks with
no downsampling, as previously described.

To begin our study of the DWT properties, consider the cross-correlation
between outputs of the DWT. We assume that z(n) is zero-mean real-valued
white noise with correlation function E{z(n)z(n + m)] = 02(m). Using
equation (4), we obtain

Ely(n)y;(n)] = 02 3 hi(k)h; (k). (11)
k

It is straightforward to obtain the correlation coefficient between DWT out-
puts, given by
2 hi(k)h; (k)
pPi; = ) (12)
T (kR (k) T, h2(k2))12

and the joint covariance matrix C of the DWT outputs at time n has (i, j)
element given by

[Cli; = 02> hy(k)h,(k). (13)
k

These relations are readily calculated for the MZ-DWT FIR filters. Corre-
lation coefficients p;; are shown at the top of table 2 for 1 < i,j < 8, and
the values on the diagonal of C are shown on the bottom. Note the de-
creasing correlation as the scales are separated, with (dyadic) scales a dis-
tance three apart being essentially uncorrelated. The uncorrelatedness of
separated MZ-DWT outputs follows intuitively from the plot of MZ-DWT
frequency responses shown in figure 2.

Next we consider properties of the multiscale product. Let

pr(n) = yi(n) - y2(n) - yx(n) (14)

denote the K'th product of the outputs of the DWT, corresponding to jo = 1
and j; = K in equation (9). For simplicity in the following we restrict
ourselves to jo = 1, but the extension to the arbitrary case is straight-
forward. Assume now that x(n) is zero mean and independent identically



Table 2. Top: Correlation
coefficients p;; between
MZ-DWT outputs y;(n)
and y;(n) (scales s = 2*
and s = 29), for white
noise input. Bottom:
main diagonal values of
covariance matrix C,
with o2 = 1.

E[p4(n)] = Y4z 0'4

Pij

1.0000 05345 02097 0.0759 0.0270 0.0096 0.0034
05345 1.0000 0.6444 02791 0.1074 0.0395 0.0142
0.2097 0.6444 1.0000 06787 03019 0.1176 0.0435
0.0759 02791 0.6787 1.0000 0.6868 0.3075 0.1201
0.0270 0.1074 0.3019 0.6868 1.0000 0.6888 0.3089
0.009¢ 0.0395 0.1176 03075 0.6888 1.0000 0.6893
00034 00142 00435 0.1201 03089 0.6893 1.0000

[Cli

35556 1.1905 0.3236 0.0825 0.0208 0.0052 0.0013

distributed (iid). The mean is given by

Elpk(n)] = Ely(n)---yk(n)] (15)
= Zhl(ll)---ZhK(lK)E[z(n—ll)---x(n—IK)].
L Iy

It follows that E[p;(n)] = 0, and E[p3(n)] = 0 due to the anti-symmetry
of h;(n) (see eq (10)); the latter also follows if z(n) is symmetrically dis-
tributed such as Gaussian. More generally, E[pk(n)] = 0 for K odd if the
odd order cumulants of z(n) are zero.

In general, E[pk(n)] # 0 for K even. For K = 2, invoking the whiteness
assumption on z(n) yields, using table 2,

Elpa(n)] = 023 h1(i)ha() = 1.190502. (16)

For K = 4, expanding the fourth-moment in equation (15) yields

Z hl(l)hg(l)hg(l)h4(l)] + O’g [7‘12(0)1‘34(0) + 7”13(0)7‘24(0) + 7"14(0)7’23(0)] R
i

17)
where

i (T Z hi(D)h;(l +7) (18)
is the deterministic correlation of the filter IRs and

4 n
e = %—3 (19)

is the normalized kurtosis. Evaluation of equation (17) for the MZ-DWT
yields

E[pa(n)] = 0.0045 4z o + 0.4940 02 = 0.0045 6% [y4e + 110.50.  (20)

11




Note from equation (20) that unless v4; is large, the SOS-related terms dom-
inate the mean for K = 4.If z(n) is Gaussian, then y4, = 0 and equation (20)
simplifies accordingly.

We find the autocorrelation of py (n) as follows. We have

Elpk(n)px(n+ )]

ﬁ (Zh n—l)) fj (Zh (m;)z(n +7- m]))J

i=1 \ [

Y il ZhK(lK)Zhl(ml ZthK

3

Tox (T)

E

I

1

K

K
[[z(n-1) H n+1’-—m_,} (1)

=]

x E

To evaluate equation (21), let us now assume that x(n) is Gaussian, so that
the expectation in equation (21) is a (2K )th joint moment of Gaussians. This
even-order moment reduces toasumof 1 x 3 x - -- x (2K — 1) terms, where
each term is composed of appropriate products of r,;(0) and r;;(7), defined
via equation (18). For K = 2 the expectation in equation (21) reduces to
three terms, and using the whiteness of z(n) we have

T (T) = 02[r32(0) + r11(T)r2a(7) + 121 (7)r12(7)). (22)

Similarly, for K = 3, the expectation reduces to a sum of 15 product terms
inr;;(7), given by

Tpy(T) = 08[r12(0) - r3,(7) - 723(0) + 712(0) - 732(7) - 713(0) + 712(0) - 733(7) - 712(0)
+ 713(0) - 21(7) - 723(0) + 113(0) - 722(7) - 713(0) + 713(0) - 23(7) - 712(0)

+ m11(7) - 723(0) - 723(0) + 711 (7) - r22(7) - 733(7) + 111 (7) - T23(T) - 732(7)

+ 712(7) - 723(0) - 113(0) + 712(7) - 721 (7) - 733(7) + T12(7) - 723(7) - 731 (7)

) ) ) - r31(7)

+ 113(7) - 723(0) - 712(0) + 713(7) - 721 (7) - 732(7T) + 713(7) - roo(T ] (23)

The number of terms grows quickly, making the algebra somewhat tedious;
for example, K = 4 results in 105 terms.

For the MZ-DWT, r,,,. (m) may be easily calculated for the various cases.
Plots of r,,(7) and r,,(7) are shown in figure 5. Note the dominance of
7p,(0) and 7p,(0). For K > 3. 1,,,.(7)/7p, (0) = (7). This effect becomes
more pronounced as K is increased, as confirmed by analysis and simu-
lations. Despite both the temporal dependence in each of the DWT time



series yx(n), as well as the cross-correlation between these outputs, px(n)
is effectively whitened for K > 3. This is intuitively apparent from figure
2, because the time domain product corresponds to convolution in the fre-
quency domain.

Figure 5. Theoretical (@) 8
correlations of (a) p2(n)
(with bias removed)

and (b) pa(n), depicting _
whitening effect of S
multiscale product. 2

Remarks

1. In deriving r,, (7), we can handle the case of z(n) non-Gaussian in
a manner similar to that above by expressing the moment in equa-
tion (21) in terms of cumulants and exploiting the assumed iid nature
of z(t). This will also generally involve higher-order analogs of equa-
tion (18). For example, for K = 2 with z(n) iid non-Gaussian, we
obtain

T2 (7) = 04[r12(0) + 11 (7)r22(7) + ro1 (T)r12(7)) + Y4z 0% | Ba(Dha(Dha(l+ T)ha(L+7) |, (24)
1

which corresponds to the Gaussian case solution of equation (22)
plus an additional term that is proportional to ~4,. Evaluating for
the MZ-DWT, we find that the second term in equation (24) is
Y4z 02[0.70868(7) + 0.35436(T £ 1)).

13




4. Step and Pulse Response
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Having shown that forming multiscale products yields a whitening trans-
- formation with respect to noise, we next consider the response to deter-

ministic steps and pulses of varying widths. This enables us to charac-
terize the SNR in the multiscale product domain, and to examine the ef-
fects of smoothing on multiscale-product edge response as a function of
the pulsewidth. The latter is particularly important to understand before
applying the multiscale product approach.

It is natural to define an SNR in the multiscale product domain. Suppose
the signal is given by s(n) = Au(n — 1) + z(n), where z(n) is additive white
Gaussian noise as above, A > 0 a positive constant, and u(n) is the unit
step function; u(n) = 0, n < 0, and u(n) = 1, n > 0. We may define the
input SNR in decibels as

A2
SNR; = 101 —. 25
0 0810 03 ( )
The (noise-free) multiscale product response to u(n — 1) at the step-change
timen=11is

K K
pk(n) = H yi(n) = AK H (Z hi(li)u(n — 1 — li)) . (26)
i=1 i=1

In this case the MZ-DWT yields px (0) ~ (1.334)X, for all scales (the MZ-
DWT filters have been designed so as to yield the same noise-free step re-
sponse amplitude at all scales; see fig. 3). We can now define the output

SNR as 9
(0
SNR, = 101og, [P (O)]yn-1)] , 27)
Tk (0)|1(n)
where pg (0)],(,_,) denotes the peak step response and r,, (0)]ny 1s the
variance of py (n) due to z(n). Note that
[Pk (0)lyn-yy]? a2\ %
—— e =8 =) (28)
Tpr (O)II(n) O

so SNR, « (SNR;)¥ and the Kth-order product nonlinearity results in
amplification of SNR;. The SNR input-output relationship is plotted in



Figure 6. SNR
input-output
relationship for step
input in white Gaussian
noise: (a) for p2(0), and
(b) for p3(0). Dashed
line SNR; = SNR, is
shown for reference.

figure 6, for K = 2 and K = 3, using equations (22) and (26). The line
SNR; = SNR, is shown for reference. There is SNR gain for SNR; suffi-
ciently positive, whereas there is an SNR loss for lower values of SNR;; and
the SNR gain increases as SNR; increases. Here § = 0.4014 for K = 2, and
B = 0.5428 for K = 3, so the loss-gain thresholds are 4 dB (K = 2) and
1.33dB (K = 3).

The above describes the response to an (essentially infinite) step function.
Next we consider the response to a pulse of finite width. In this case the in-
teraction between edges becomes an issue when they are both contained
within the impulse response region of support. Also, the smoothing at
higher scales will smear short pulses and dampen the maxima in px(n), as
depicted in figure 4. This is evident from study of the MZ-DWT IRs in fig-
ure 1, whose values in the neighborhood of occurrence of the impulse grow
steadily smaller with increasing scale. The suppression of small features in
pk(n) is a direct result of the smoothing at the higher scales, and may be
considered beneficial or harmful, depending on one’s point of view. These
effects can be quantified by examining the noise-free response to a pulse
of varying width. Figure 7(a) shows normalized values of p3(0), where the
input is a pulsewidth of ng, given by s(n) = u(n — 1) — u(n — 1 — ng), for
ng = 1,---,11. Here p3(0) is the peak response to the leading edge of the
pulse. We plot 10log,, p3(0), normalized by the maximum of p3(0) over the
range of ng. Pulsewidths of ng > 6 yield essentially the same peak response
in p3(n), equivalent to the ideal unit-step response. The case of ng = 1 corre-
sponds to s(n) = d(n — 1), an impulse. Figure 7 indicates a (deterministic)

(a) 40 T T (b) 60
50
30+
40}
20 + 30}
20} - B
10+ -
m“ n:e - -
4 Z 10 e
7] ] -
0 L k'
of 7
-10 -0 r
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Figure 7. Edge
suppression: (a) product
of scales 1, 2, and 3, and
(b) product of scales 2,
3,and 4.
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15-dB suppression of impulses in p3(n), relative to the noise-free step re-
sponse that is achieved for a pulsewidth of ng > 6. The figure also shows
~ 3 dB suppression of edge response for a pulsewidth of 2 (three samples
total).

We repeat the above, now using the product of scales 2, 3, and 4, with re-
sults shown in figure 7(b). In this case, the additional smoothing and omis-
sion of the first scale leads to more suppression of impulses relative to the
step response (about 31 dB). However, the price paid is that a pulsewidth
of 10 or more samples is now required for the edge response to match that
of the ideal step response, and pulsewidths of 5 have =~ 3 dB suppression
in edge response.

While the results of this and the previous section are encouraging, they do
not tell the entire story. In the following section, we examine the pdf of mul-
tiscale products, and find them to be strongly heavy-tailed non-Gaussian.
This has implications for edge detection in the multiscale product domain.



5. Multiscale Products are Heavy Tailed

Next we study the univariate pdf’s of the multiscale products p2(n) and
p3(n). We show that they are in general non-Gaussian and heavy tailed. We
then consider detection, and use the pdf’s to set detection thresholds.

5.1 pdf’s of Multiscale Products

Although it is whitened with respect to its second-order statistics, px(n)
is in general distinctly non-Gaussian. However, determination of the first-
order pdf is not straightforward, even with z(n) Gaussian. A closed form
is only available for the bivariate case, given by Miller [24, sect. 2.3]:

£(z) = % W[ e=v2% Ko (|2|v/orwm), 29)

where W = C~1 is the inverse of the bivariate covariance matrix with ele-
ments [w];;, 1 < 4,57 < 2, and Kj is the modified Bessel function of the
second kind and order zero. For the MZ-DWT we find that for the first two
scales

W=Cl=

-1
3.5556 1.1905 _ | 03937 -0.3360
1.1905 1.3951 —0.3360 1.0035

] , (30)
and |W| = 0.2822; so that in this case

f(z) = &5’13 €%-33602 K0(0.6286 |z|). (31)

For third or higher order products, we must resort to parametric or non-
parametric numerical techniques, as we describe next.

Figure 8 depicts pdf’s for two cases with z(n) white Gaussian, the theoret-
ical pdf for K = 2 from equation (31), and an unsmoothed histogram esti-
mate for K = 3based on 5x 108 samples. Unit-variance Cauchy and normal
pdf’s are shown for reference. Note the skewness in the K = 2 case, due
to the positive correlation between y; (n) and y2(n), and because K is even.
In this case the positive tail is heavy, showing a strong impulsive nature
in p2(n) on the positive side, with a much lighter tail on the negative side.
Experiments with numerical estimation of the pdf in the K = 2 case exhibit

17



Figure 8. (a) Theoretical (a) 44

first-order pdf of p2(n)
and (b) estimated
first-order pdf of pa(n).
Unit variance normal
and Cauchy shown for
reference.
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excellent agreement with the theory. In the K = 3 case the pdf is symmetric
with tail behavior heavier than Gaussian but lighter than Cauchy.

An appealing alternative to histogram or kernel-based pdf estimation is to
employ an L-term Gaussian mixture model, given by

L A 2
1) =3 o e (—'2%) , )

=1

where the model is parameterized by £ = [o%,---,0%] and
A = [A,---, A1), with A, = 1 — EIL:”II A1. The model encompasses
a broad range of symmetric zero-mean pdf’s; e.g., see Liporace [19].
Approximate maximum-likelihood (ML) estimates of the parameters are
readily obtained using the iterative expectation-maximization (EM) algo-
rithm; e.g., see McLachlan and Krishnan [23, sect. 2.7]. As is well known,
each iteration of the EM algorithm achieves nondecreasing likelihood,
although local convergence may be the result, depending on initialization.
However, for heavy-tailed symmetric pdfs (all mixture terms zero mean,
as in eq (32)) very good results can be obtained for small sample sizes
with minimal dependence on initialization. The Gaussian mixture is
readily applied to detection and estimation problems in heavy-tailed noise
(5,16,17].



Figure 9 shows an example of f(z) for ps(n), obtained from 1000 samples
and L = 10 in equation (32). The EM algorithm was iterated 100 times; this
was more than adequate in our tests. For initialization we used

A = 0.98, Ay = 0.005, \; = 0.0025 for 3 <i<6,)\ =0.00125 for 7<i< 10,
T = 62[1,5, 10,15, 20, 100, 500, 1000, 2000, 4000},

where 62 is a robust estimate of the variance given by [20, 400]

62 = (5?;)2 (33)

where 7 (the median absolute deviation) is the median of |z(n) — Z|, and
Z is the median of the observations z(n). The final parameter estimates of
#(z) in equation (32) are shown in table 3. The overshoot near the origin
and undershoot in the estimated pdf tail are typical of our experience, ap-
parently due to the sample size. We have obtained useful estimates with as
few as 100 samples because of the relatively heavy tails, i.e., a sample size
of 100 yields enough information about tail behavior to form meaningful

pdf estimates.

Figure 9. Estimated (@ 15 . , . (b) 0.045
first-order pdfs of p3(n) Unit |

. -|-=- Unit norma
comparing 004} - - |— Mixture pdf
nonpararpetnc large. ' - - Histogram pdf
sample histogram with A

0.035H"

parametric ten-term
Gaussian mixture.
(Panel (b) is a blowup of
panel (a).) Mixture
parameters estimated
via EM algorithm: 1000
samples and 100
iterations.
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Table 3. Estimated
parameters of ten-term
Gaussian mixture
approximation to
non-Gaussian pdf of
ps(n) with white
Gaussian input to
MZ-DWT.

Table 4. Estimated
parameters of px (n) for
varying K, showing
heavy-tailed nature of
pdf’s, and skewness for
K even.

20

In table 4 we show some estimated statistics of px(n) for 1 < K < 4, for iid
unit-variance Gaussian input and iid unit-variance Laplace input, includ-
ing normalized skewness and normalized kurtosis. Assuming zero-mean,
normalized kurtosis is defined in equation (19), and the normalized skew-
ness is given by

E[z3(n)]

Y3r = W . (34)

l At o?

1 00709 0.0000

2 02429 0.0035

3 02914 0.1031

4 0.1562 0.8872

5 0.0940 3.0992

6 01107 14.0930

7 00136 121.0198

8 0.0102 1283395

9 0.0064 128.6320

10 0.0036 128.6911

Unit-variance Gaussian input

K = No. of products 1 2 3 4
Mean 0.0000  1.1899 0.0004 0.4948
Variance 35531 63654 10.1739 6.9256
Skewness 0.0007  2.4063 0.0143 10.4348
Kurtosis -0.0010 10.1278 52.7261 230.4220

Unit-variance Laplace input

K = No. of products 1 2 3 4
Mean 0.0000  2.3805 0.0029 2.0214
Variance 26666 58274 109141 13.3247
Skewness -0.0003 4.0264 -0.1553 18.0487
Kurtosis 14981 32.0013 171.7648 825.0208




These estimates were obtained by averaging over 100 runs, with 10° sam-
ples for each run. They demonstrate the heavy-tailed nature of px(n), as
well as the strong skewness for K even. These may also be evaluated theo-
retically, although the task is tedious as K increases.

5.2 Detection in the Multiscale Product Domain

Knowledge of the pdf of px(n) may be used to set detection thresholds to
achieve a constant false alarm rate. This can be achieved with a known or
estimated noise variance. We show a 1-D edge detection example in fig-
ure 10, where detection is declared when |p3(n)| exceeds a threshold. The
threshold was obtained from the histogram estimate of the pdf for p3(n),
and set to achieve Py, = 0.01 (the resulting threshold was 13.5053). Three
different edges were used in additive white Gaussian noise with variance
o2 = 1. Consider a sigmoidal step change signal, given by

mo + mle—-aT(n-—no—T)
1 + e—oT(n—no—7)

zs(n) = (35)
This model was used by Reza and Doroodchi [25]. The parameters m; and
mg are the signal levels before and after the step, T is the sampling interval
time, parameter a determines the risetime, and the step occurs (in contin-
uous time) at noT + 7. Without loss of generality we can assume T’ = 1,
because T' can always be incorporated into a. Let A = my — m; denote
the step change. An alternative expression for z;(n) in terms of the tanh
function is

zs(n) = :;1'[1 + tanh (gzz(n — Ny — T))] +m;, n=0,.,N-1. (36)

For the example of figure 10, two of the signals were based on z,(n). The
parameter 7 was uniformly distributed in [0, 7], modeling the effects of
time quantization via sampling. The SNR is defined in decibels as
A2

SNR = 10log;q o7 (37)
Two cases of equation (36) were implemented, @ = 4.4 and o = 1, cor-
responding to a fast and slower step risetime, respectively. In both cases
my = 0and T = 1, and my was adjusted to achieve the desired SNR. The
third curve in figure 10 corresponds to a unit step, from m; = 0 to my,
where ms is set to achieve the desired SNR. One thousand Monte Carlo tri-
als were run for each SNR value, and p3(n) was tested at the position where
the edge should produce a maximum. As we would expect, slower risetime
results in poorer detection performance. We also note the moderate to high
SNR required for a high probability of detection.
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6. Estimation of Step-Change Location

Next we consider estimation of step-change location. This assumes that a
change has occurred in the observation interval, hence there is no detection
problem. In the appendix we develop a general-closed form CRB for step-
change estimation in additive iid non-Gaussian noise, and provide specific
expressions for the step-change signal model given by equation (35) or (36).
This generalizes the discrete-time results of Reza and Doroodchi [25].

The noisy discrete-time signal is given by
y(n) = z(n) +v(n) = s(a(n —n, — 7)) +v(n), n=0,..,N-1 (38

where v(n) is zero-mean white Gaussian noise with variance o2. As de-
scribed in the previous section, the step-change is centered at time n, + 7,
where 7 is a sample-time , and « is a scaling parameter that determines the
risetime of the step (larger o corresponds to a faster risetime). A general
expression for the Fisher information is given in the appendix by equation
(A-8) for 7 random and uniformly distributed over the sampling interval;
an asymptotic expression is also given in equation (A-9). These expressions
indicate that the Fisher information is proportional to the risetime parame-
ter o, and inversely proportional to the noise variance.

To quantify the general case, we consider the step change signal model of
equation (35) or (36). For this sigmoidal step model we find the closed-
form Fisher information to be equation (A-13); an asymptotic form is also
provided in equation (A-14). Figure 11 plots the Fisher information of equa-
tion (A-13) as a function of TN and d, where T is the sampling time, N
is the window size, and d = n,/N is the fractional index of the location
parameter (see the discussion in the appendix). Thus d = 0.5 corresponds
to the step change occurring approximately at the center of the observation
window, and larger values of oT'N indicate that the signal variation is more
completely captured within the observation window. From figure 11 we see
that the Fisher information reaches its asymptotic maximum for a range of
d of approximately 0.2 < d < 0.8, for aT'N > 15. Even for oTN = 2 the
Fisher information is about half its asymptotic value. This indicates that
only local information around the step change is necessary to achieve good
estimation of location.

It is also interesting to consider the case when 7 is a nonrandom fixed con-
stant 79. The Fisher information for this case is given in the appendix in
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Figure 11. Fisher
information for
step-change location

" estimation with

uniformly distributed
sample-time offset 7.

Figure 12. Fisher
information for
step-change location
estimation with
sample-time offset 7
nonrandom. Curves
parameterized by 7;
7 = 0 implies sample
time and step-change

aligned, 7 = 0.5 implies

step-change center
exactly between
samples.
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Fisher information

Fisher information

equation (A-11). We plot this case in figure 12, showing Fisher information
versus parameter aT, with curves parameterized by 0 < 7 < 0.5. Due to
symmetry the case of 7 = 0.6 is equivalent to that for 7 = 0.4, and so on.
The case of 7 = 0 (or 7 = 1) corresponds to the step-change being cen-
tered exactly at the sample time, so that the Fisher information increases
without bound as o7 increases. The curves for 7 # 0 in figure 12 show the
sensitivity to 7 in estimating step location. Depending on the step risetime




Figure 13. MSEs and
theoretical CRB for
step-change location
estimation.

and the sampling time, it matters where the samples fall on the continu-
ous representation of the step. We note that as oT — oo, the step risetime
becomes instantaneous; in this limit all of the curves decrease to a limit-
ing value (except the 7 = 0 and 7 = 1 cases) as the samples will bracket the
instantaneous change and no sub-sample time accuracy can be determined.

As an example, we show in figure 13 the theoretical CRB, as well as exper-
imental mean-square error (MSE), for two edge-location estimation meth-
ods. The step was modeled via equation (35) with 7 uniformly distributed.
The two estimation methods are first, based on p3(n), and second, based
on a simple gradient estimator with FIR given by [-1,0, 1]. The sigmoidal
function was generated with m; = 0, T = 1, and a = 4.4, corresponding
to a risetime of about 47T (see Reza and Doroodchi [25]). The step height
mg was set to achieve the desired SNR. We used N = 256 and averaged
over 5000 Monte Carlo trials for each SNR value. For each trial 7 was se-
lected uniformly in [-0.5,0.5]. The step was centered at N/2, and the es-
timate of step location was taken to be the maximum in a 32-sample ob-
servation window centered on N/2. The simple gradient estimator has no
smoothing, whereas p3(n) exploits multiple smoothing levels. At low SNR
the benefit of the smoothing is evident, as the DWT method outperforms
the simple gradient estimator by about 5 dB. At high SNR both methods
are time-quantization error dominated. The simple gradient approaches
the minimum variance of 1/12 of a sampling time, which arises due to the
uniform distribution of the sampling phase error. The DWT method ap-
proaches 1/2, reflecting the effects of smoothing via the increased variance
of the estimate.

| —— CRLB
O—0  Wavelet product
Simple gradient

107}

1072

5 20 25 30
SNR (dB)
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Changing o changes the effective risetime of the sigmoidal signal. Decreas-
ing o creates a slower rising step. This results in a shift upward of the CRB
as the step location is inherently more difficult to estimate. Repeating the
experiment in figure 13 with lower a results in a shift to the right as higher
SNR is needed to obtain the same performance, while the general behavior
of the curves is the same.

Remarks

1. In forming multiscale products, the individual outputs y;(n) could be
raised to different powers before the product operation. Alternatively,
one could search for minima in the reciprocal multiscale product. An
interesting special case arises in products of the form

X = T2, (39)
j=1

For Yj iid Gaussian, X,, is a-stable, with a = 2™, and skewness
parameter § = 1 [6]. With these values for a, X,, has finite mo-
ments only for orders less than 2™, which decreases rapidly as m in-
creases, resulting in very heavy-tailed distributions for X,,,. The case
of m = 1 is well known, corresponding to the Pearson V or Levy
pdf. One could also use log X,,. Applying this result to MZ-DWT
outputs would require skipping scales in order to approximate the
iid assumption (see table 2).



7. Discussion

We have analyzed the use of products for nonlinearly combining multi-
scale wavelet outputs for detecting and estimating steps and edges. The
smoothed gradient DWT developed by Mallat and Zhong provides a
wavelet framework for this approach. The technique exploits the low com-
plexity of the DWT computation, amounting to a few FIR filters. Despite its
nonlinear nature the multiscale product is whitening, although the result-
ing noise pdf is distinctly non-Gaussian and generally heavy tailed. Closed-
form expressions are unavailable for products of order greater than two,
but pdf estimates may be obtained in a relatively easy manner. The heavy-
tailed nature of the multiscale products is problematic from a detection
viewpoint, as edge detection in the multiscale-product domain amounts
to detecting impulses in impulsive noise. This points to the more general
idea that gradient estimation is not particularly well posed, and that these
methods are likely to be used for detection only in a moderate to high SNR
regime as, for example, in image processing problems. Location estimation
may be characterized by comparison with the general CRB. The results in-
dicate tradeoffs possible in exploiting multiple smoothing levels when the
most appropriate single smoothing level is not known a priori.
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Appendix A. Cramer-Rao Bounds and M-File Listings

We derive a closed-form expression for the Fisher information matrix (FIM)
for a general step-change problem, and give specific results for a sigmoidal
(and equivalent tanh) step-change signal model. This leads to a simple ex-
pression for the Cramer-Rao bound (CRB) for step change location estima-
tion. This generalizes the discrete-time results of Reza and Doroodchi [25].
The continuous-time model, considered by Kakarala and Hero [14], can
also be generalized to an arbitrary signal shape along the lines below.

A.1 General Formulation

The step-change signal is parameterized by a location parameter p =
T(no, + 7), where T is the sampling interval, n, is an integer, and 7 € [0, 1)
models sample quantization. Initially, we will assume that p is nonrandom.
Since our discrete wavelet transform (DWT)-based (and other) algorithms
yield estimates of n,, not of p, we will later model 7 as being random and
uniformly distributed over [0, 1). The bound obtained by averaging the FIM
for p wrt 7 may be loosely considered as a bound on the estimate of n,; itis a
bound on the average performance. Note, however, that since n, is integer
valued, its CRB does not formally exist.

Let o denote a parameter that characterizes the step risetime. The noisy
signal is given by

y(n) =z(n) +v(n) =s(e{n—n,—7))+v(n), n=0,..,N—1, (A-1)

where s(-) is the deterministic signal, and v(n) is the additive noise. Note
that the observed process y(n) is nonstationary—it has a time-varying mean
given by the deterministic signal z(n); its cumulants are identical to those
of v(n), so that if v(n) has time-invariant cumulants, so will y(n). In the
sequel, we assume that v(n) is iid, zero-mean, non-Gaussian, with finite
variance 02, and pdf p,(v). The colored noise case can be handled along the
lines of Ghogho and Swami {10], and Swami [31].

We will assume that (1) the deterministic signal, s(-), is parameterized by a
finite-dimensional parameter vector 6;, and the noise pdf p,(v) by a finite-
dimensional parameter vector, 6,; (2) the elements of §, do not depend
upon those of 6,; and (3) the noise pdf, p,(v), satisfies the regularity condi-
tions for the existence of the CRB.
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Under these conditions, it was shown by Ghogho and Swami [10] that the
FIM for the parameter vector 6 = [6,,6,] is block diagonal. Consequently,
the achievable accuracy in estimating 6; is the same, regardless of whether
6, is known. This result is well known in the white Gaussian case (less
so in the colored Gaussian case); this decoupling between the signal and
noise parameters is intuitive, since the signal parameters are related to the
mean, and the noise parameters to the cumulants.* Hence, we may assume,
without loss of generality, that 6, is known. In this case, we can use the

results of Swami [31] to write the (m, n) element of the FIM corresponding

to 4, as
N-1
_ [no oz(k) Ox(k) )
Jn = [aﬁ} L{:O 805(m) 8b4(n) |’ (A4-2)
where
& o [[dp(w)]? 1 _ 2 i
Yo = Cfl,/ [_du ] o) du =0l , (A-3)

where I, is the Fisher information for the location parameter of the pdf
po(v). Thus, the FIM can be written as the product of three terms: the SNR,
a pdf-dependent term, and a signal-related term. In the class of symmetric
pdfs, 7.0 > 1, with equality being attained in the Gaussian case.

As we noted earlier, our DWT-based (and other) algorithms yield integer
estimates of n,; one could, of course, augment this with an interpolation
scheme to estimate p. Alternatively, one could model 7 as being random
and take the expectation of the FIM in equation (A-2) wrt 7, and thus obtain
an expression for the achievable accuracy in estimating p. We will assume
that 7 is independent of v(n).

Since the pdf of 7 is not related to n, or to the other parameters of s(-), the
modified FIM is obtained as

N-1
_ [0 oxr(k) Ox(k) )
Jmn = [02 ] E, [k:O 90.(m) 693(")] ’ (A4

v

where the expectation is with respect to the pdf of the nuisance parameter
7. Consequently, the modified CRB is given by

*For any iid process with finite moments, the sample estimate of the mean is uncorre-
lated with that of the variance; further, the two are asymptotically jointly normal. The for-
mer is true asymptotically for any weakly mixing process. Further, if we write z(t) as Ac(t),
then the achievable bound on A (“amplitude”) is decoupled from those on the parameters
describing ¢(t) (“shape”).



var{f,} > J 71, (A-5)
which may be easily calculated for any specific s(u).

To proceed further, we need an explicit model for z(n) as a function of n,
and the pdf p(r). We will assume a uniform pdf for 7 (which is, perhaps,
the most reasonable pdf for 7), and evaluate the FIM for the general signal
case.

A.2 Uniformly Distributed 7

We will focus on the FIM for the location parameter p. Because 7 is uni-
formly distributed in [0, 1), we have

J = M0 Z/ [an)}

n—O
= 0 Z / [s'(a(n — no—'r))]2d'r
U n—O
- BT [ e
= aly Y (Glatn— o) - Gla(n-rno-1), (49
Y n=0
where
Glu) = / [’ () 2du. (A7)

Thus we obtain a closed-form expression for the FIM given by
J = QM[G(a(N no — 1)) — G(a(~ng — 1))]. (A-8)

Finally, we may evaluate the CRB via equation (A-5). Note that the FIM is
proportional to the risetime parameter o and inversely proportional to the
noise variance, as may be expected.

For any reasonable step-approximator, s(u), its derivative will vanish out-
side a more or less small interval centered around ng, and we expect that
G(u) will attain its asymptotic values rather quickly. The asymptotic value
is obtained by assuming that IV is large and that n is not too close to either
end of the observation window,

Joo = aM[G(-!-oo) (—00)] . (A-9)
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One could consider the signal s(t) as a smoothing filter for the underly-
ing ideal step function; one could then try to find the s(t) that maximizes
the FIM given by Ji, subject to a sensible constraint such as unit energy.
It would be interesting to consider the joint estimation of all the signal
parameters (o, p, and A).

In the case of Gaussian noise, we note that equation (A-8) is also the FIM
for the estimate of the nonrandom parameter p, when the observations are
in continuous time, i.e., y(t) = s(a(t — p)) + v(t),0 < t < (N - 1)T, where
v(t) is band-limited white Gaussian noise with spectral density ¢2. This can
be established by mimicking the development in Kakarala and Hero [14).

A.3 Sigmoidal Edge Model

36

J =

(@T)S0 [tanh(aT'(N — ng — 1)/2) — tanh(aT(—ng - 1)/2)

Consider the sigmoidal step change signal described in equation (35),

my + mle—aT(n—no—f)

xs(n) = 1+ e—oT(n—no—7) (A-IO)
Let A = my; — m; denote the step change.
For the nonrandom parameter p we obtain
T)2 w0 A2 N-1
g = CD0 A S e (aT(k — ng — 7)/2), (A-11)
16 o2 =

whose value depends strongly upon 7, but not so strongly upon n, (unless
n, is close to 0 or N — 1).

We will now randomize over 7. Using equation (A-10) we obtain

mo 4+ mpe

s(u) 1+e-v
s'(u) = Acosh™2(u/2)/4

2
Glu) = f—ﬁ [ @y

A? 1
= ?[tanh(u/Q) -3 tanh®(u/2)], (A-12)

ne

which via equation (A-8) leads to a closed-form expression for the FIM
(which was expressed only as a summation in eq (10) of Reza and Doroodchi
[25)),

)S
8
—% tanh®*(aT(N —ng — 1)/2) + %tanhs(aT(—no -1)/2){, (A-13)



where § 2 (mp — my)?/0? = A2/o? is the SNR.
The tanh(u) function varies from —1 for u << 0 through O at v = 0 to +1
for u >> 1. Thus, the value of the AFIM for z,(n) is

_ aTSvo4 _ aTSypo
- 8 3 6
The AFIM is proportional to the SNR and to the risetime parameter oT.

The AFIM approximates the FIM extremely well when NoT >> 1 (usually
a few samples for moderate values of aT).

Joo

(A-14)

By re-indexing the observation window from0,...,N —1to1,..., N we can
write the alternative expression

_ (aT)Sv0
8

where d = n,/N is the fractional index of the location parameter, and
f(u) = tanh(u) — tanh®(u)/3.

J [f(eTN(1 - d)/2) - f(-aTd/2)), (A-15)

A.4 M-File Listings

In this section, we provide listings of Matlab M-files for the forward and in-
verse Mallat-Zhong discrete wavelet transform (MZ-DWT) algorithm [22,

app B].

$ [WT,S] = fwt(J,x) Forward wavelet transform
%

$ J = # of scales

$ x = data vector

$ WT = matrix with wavelet transform

% S = coarse low-pass time series remaining

function [WT,S] = mal_fwt(J, x)

N
M

"

length(x);
2*N;

]

% normalization coefficients

lambda = [1.5, 1.12, 1.03, 1.01];
if J > 4

lambda = [lambda,ones(1,J-4)];
end
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% filter coefficients

m
n

[0.125, 0.375, 0.375, 0.125);
= -1*[-2.0, 2.0];

@
t

$ convolution offsets

Gn = 2;
for j = 1:3-1
znum = 275 - 1;
Gn = [Gn, ((znum+1)/2)+1];
end
Hn = 3;
for j = 1:3-1
znum = 2°j - 1;
Hn = [Hn, ((znum+l) /2)+znum+2];
end

% compute the WT at each scale
% signal is odd-symmetric periodically extended for borders

S = [fliplr(x),x,fliplr(x)];
WT = [];

figure(1l)

for j = 0:J3-1

znum = 273 - 1; % # of zeros
Gz = in_zeros(G,znum); % insert zeros into G

Hz = in_zeros(H,znum); % insert zeros into H

% compute wavelet transform at scale j and store in WT

WEf = (1/lambda(j+1))*conv(S,Gz); % size(Wf)
WE = WE(N+Gn(j+1) :2*N+Gn(j+1)-1);
WT = [WT, WEf’);

% compute next time series

S2 conv(S,Hz);
S2 S2(N+Hn(j+1) :2*N+Hn (j+1)-1);
S = [fliplr(S2),82,fliplr(S2)];

]

i}



end

S = S(N+1:2*N);

return

$ x = iwt{WT,S) Inverse wavelet transform
%

% WT = matrix with wavelet transform

$ S = leftover low-pass time series

$ x = reconstructed time series

%

function x = mal_iwt (WT,S)
[N,J] = size(WT); % J=# of scales, N=data length
$ normalization coefficients
lambda = [1.5, 1.12, 1.03, 1.01];
if J > 4
lambda = [lambda,ones(1,J-4)];

end

$ filter coefficients

H = [0.125, 0.375, 0.375, 0.125];
K = [0.0078125, 0.054685, 0.171875];
K = [K, -1*fliplr(K)];

% convolution offsets

Kn = 3;
for j = 1:J3-1
znum = 273 - 1;
Kn = [Kn, ((znum+1)/2)+2*znum+3];
end
Hn = 2;
for j = 1:7-1
znum = 2°3j - 1;
Hn = [Hn, ((znum+1l)/2)+znum+2];

end



% recursively compute the inverse WT, proceeding down in
% scales, signal is odd-symmetric periodically extended

S=S(:);
S1 = [fliplr(Ss),S,fliplr(S)]); S1=81(:);
for j = J:-1:1

znum = 27 (j-1) - 1; % # of zeros
Kz = in_zeros(K,znum); % insert zeros into K
Hz = in_zeros(H,znum); % insert zeros into H

WTJ = WT(:,3); WITj=WTj(:);
WT_ext = [fliplr(WTj),WTj,fliplr(WTj)]; WT_ext=WT_ext(:);
Al = lambda(j)*conv(Kz,WT_ext);

Al = A1 (N+Kn(j):2*N+Kn(j)-1);

A2 = conv(Hz,S81);

A2 = A2(N+Hn(j) :2*N+Hn(j)-1);

Sl = Al + A2;

S1 = [fliplr(S1)’,S81’,fliplr(S1)’]); S1=81(:);

end % end IWT loop

X = S1(N+1:2*N)‘;

return

% y = ins_zeros(x,n)

%

% Insert n zeros between elements of vector x

% and return in y. Used in discrete wavelet transform.
%

function y = in_zeros(x,n)

ifn==20

Yy = X;
return
end

if n>0
newlen = (n + 1)*length(x); % length of y



y = zeros(l,newlen); % new filter vector
index = l:n+l:newlen-n; % indices of data
yv(index) = x; % insert data into y

end

return
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